مدل سازی توزیع حباب ها در سیستم بستر شناور گاز- مایع به روش دینامیک سیالات محاسباتی (CFD)
فصل اول
کلیـات
فصل اول : کلیات
مقدمه
هر چند که در اوایل توسعه علم، ریاضی‌دانان به جای پیشگویی به دنبال یافتن روابط حاکم بر عملکرد سیستم‌های موجود بودند اما امروزه با پیشرفت‌های انجام شده، نسبت به دانشمندان علوم تجربی پیش‌قدم هستند. دانشمندان علوم تجربی گرچه با حل ریاضی پدیده‌ها آشنا هستند ولی برای آزمایش‌های خود با مشکلات زیادی مواجه می باشند. مهم‌ترین مسأله مربوط به دینامیک سیالات از نظر ریاضی مدت هاست حل نشده و آن‌هایی که حل شده‌اند نیز با مشکلات زمان زیاد برای انجام عملیات ریاضی مواجه هستند. با توسعه رایانه ها روز به روز این مشکل آسان و آسان تر می شود. و اینک پیچیده‌ترین این مسائل که بحث‌های مهم انتقال حرارت و سیالات می باشند از طریق رایانه قابل حل است. امروز علم دینامیک سیالات محاسباتی به صورت یک ابزار پرقدرت و توانا برای تحلیل رفتار جریان سیال و انتقال حرارت در سیستم‌های با هندسه پیچیده و معادلات حاکم پیچیده برای محققین و مهندسین درآمده است. پیچیدگی معادلات حاکم بر مسأله، تأثیر متقابل پدیده‌های فیزیکی مختلف، گذرا بودن اغلب مسائل مهندسی، بالا بودن هزینه های مربوط به تجهیزات آزمایشگاهی و محدودیت استفاده از دستگاه‌های اندازه‌گیری در بسیاری از مسائل علمی‌، از جمله دلایلی می باشد که استفاده از روش‌های تحلیلی و آزمایشگاهی را در مقایسه با روش‌های عددی محدود می‌کند. اگرچه مدل‌سازی راکتور تعیین پارامترهای هیدرودینامیکی آن امری ضروری به نظر می‌رسد. هیدرودینامیک این راکتورها به شدت متأثر از مقیاس عملکرد آن‌ها می باشد. (به دلیل کاربردهای وسیع این راکتورها در صنعت، تلاشهای زیادی جهت ارائه یک روش قابل اطمینان برای افزایش مقیاس صورت گرفته است.) در گذشته محققین جهت دستیابی به هیدرودینامیک این راکتورها به تجارب آزمایشگاهی می‌پرداختند. نتایج حاصل از این آزمایش‌ها لزوماً در مقیاس‌های بزرگ صحت نداشتند و لذا به عنوان قوانین افزایش مقیاس قابل کاربرد نبودند. به طور مثال تأثیرات دیواره‌ای یک راکتور کوچک بر حرکت، تشکیل و شکستن حباب‌ها مشخص است. همچنین واضح است که این تأثیر در راکتورهای بزرگ‌تر متفاوت می باشد. لکن میزان و چگونگی این تفاوت‌ها معلوم نیست و لذا بهترین راه دست‌یابی به هیدرودینامیک قطرهای بزرگ انجام آزمایش در راکتورهایی با همان قطر است که البته بسیار هزینه ‌بر می‌باشد که به کمک CFD[1] می‌توان راکتور را در اندازه واقعی شبیه‌سازی کرد و با توجه به نتایج حاصل به configuration و شرایط مناسب راکتور پیش بینی کرد .
پایان نامه - مقاله - پروژه
تحلیل رفتار سیالات
برای تحلیل رفتار سیالات می‌توان مطالعات آزمایشگاهی و تجربی را به کار برد. از سال‌ها و قرن‌های گذاشته دانشمندان زیادی از جمله اولر[۲]، لیبینیز[۳]، نیوتن[۴]، رینولدز[۵]، پرانتل[۶]، استوکس[۷]، ناویر[۸] و … تلاش‌های فراوانی جهت مطالعه، بررسی و شناخت رفتار جریان‌های سیالات و در طول دوران‌های مختلف انجام دادند.
این تلاشها منجر به پیدایش مکانیک سیالات[۹] گردید. به عبارت دیگر مکانیک سیالات شالوده نتایج و یافته های مطالعه شده می‌باشد که به صورت آزمایشگاهی و در اثر سعی و تکرارهای گسترده به دست آمده است.
با بهره گرفتن از نتایج حاصل شده از آزمایشهای مختلف و استفاده گسترده معادلات دیفرانسیل و روابط ریاضی معادلات حاکم تئوری ـ کاربردی و امروزی به دست آمدند. بسیاری از دانشمندان به جمع‌ آوری و تعمیم معادلات مکانیک سیالات پرداختند. پس به طور کلی برای تحلیل رفتار سیالات دو روش موجود می‌باشد:
روش آزمایشگاهی و تجربی
روش تئوری ( استفاده از معادلات حاکمه )
همانطور که اشاره گردید روش‌های تئوری از مطالعات آزمایشگاهی و واقعی پدیده‌های علمی به دست می‌آیند. با بهره گرفتن از روش‌های ریاضی می توان به حل معادلات تئوری دست یافت. جواب‌های تحلیلی معادلات ریاضی، جواب‌های بسیار دقیقی هستند به شرط آنکه معادله مورد نظر با توجه به هندسه مسئله توسط روش تحلیلی قابل حل باشد. شرایط مسئله مانند دو بعدی و یا سه بعدی بودن هندسه، شرایط مرزی، دو فازی بودن مسئله، بزرگی ابعاد هندسی مسئله و … باعث استفاده از روش‌های عددی جهت حل معادلات گردید.
روش‌های عددی به صورت المان محدود ، با تقریب مناسب به حل مسأله پرداخته و جواب‌های ایده‌آل و قابل قبولی را به ما می‌دهند.
پیش زمینه پیدایش CFD
توسعه و پیشرفت علوم کامپیوتر و استفاده گسترده از زبان‌های برنامه‌نویسی منشأ پیدایش دینامیک سیالات محاسباتی، جهت حل عددی معادلات مکانیک سیالات در قرن حاضر گردید. به بیان روش عددی CFD، یک روش جدید، سریع و کاربردی در دنیای امروز است که به حل معادلات مکانیک سیالات می پردازد.
اگر روشCFD را به عنوان سومین روش تحلیل جریان سیالات قلمداد نماییم، می‌توانیم به یک مقایسه خلاصه و مختصر بین روش‌های مطرح شده بپردازیم.
مقایسه روش های حل معادلات مکانیک سیالات
جدول شماره ۱-۱ : مقایسه روش‌های حل معادلات مکانیک سیالات

 

نام روش محاسن معایب
روش آزمایشگاهی و تجربی بیان نتایج واقعی و کاملاً معتبر – دقت بسیار بالا محدودیت محیط آزمایشگاه
محدودیت ابزار سنجش
بالا بودن هزینه ساخت مدل واقعی
بالابودن هزینه ها به علت صرف زمان بالای آزمایش
خطر آزمایش برخی از سیالات شیمیایی
روش تئوری استفاده از معادله تعریف شده ریاضی محدودیت معادل بندی
در هندسه‌های پیچیده کاربرد ندارد
خطای پایین نسبت به نتایج واقعی
روش CFD کاهش زمان دستیابی به نتایج
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...